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Background

Data missingness is a major challenge and a source of bias in evidence-based medicine.’

Missing data is common in both randomized controlled trials (RCT) and observational real-world data (RWD)
studies.?

Records that contain incomplete data are often excluded from studies, but this strategy can introduce bias.
Biases tend to differ between RCT and observational RWD datasets.?

In this study, we conducted an assessment for methods for imputing missing data in both RCT and RWD
acute myeloid leukemia (AML) datasets.

A challenge of this type of analysis is the presentation of data in variable formats.! To address this issue, an
evaluation of the utility of standardizing data format was also performed.

Objectives

Evaluate the utility of different techniques for imputing missing data
Evaluate the utility of standardizing data format

Methods

Data Source
The clinical trial data cohort was derived from a pooled dataset of 7 clinical trials (n=719) for relapsed/refractory
AML, conducted from March 2008 - Nov 2017, from the Medidata archive of > 3,000 trials.*

* Pooling was accomplished through harmonization to Clinical Data Interchange Standards Consortium
Study Data Tabulation Model version 1.4.°
De-identified Oncology Electronic Medical Record (EMR) data was obtained from the Guardian Research
Network™ (GRN) of integrated delivery systems from Jan 1990 — July 2018.

* GRN is a nationwide consortium that aggregates hundreds of thousands of cancer patients’ electronic
medical records from multiple integrated community health systems into a single searchable database.®
Variables for Imputation

Data containing the same five variables for each data source were created as sample data (Table 1).

Metrics were selected to represent a number of potential variables of interest in both clinical and health
outcomes study contexts.

Imputation was evaluated using categorical, continuous numerical, and binary values.

Only non-demographic observations were imputed; demographic variables were used as covariates in
imputation processes.

Data Transformation and Analysis

Both RCT and RWD datasets were converted to the Observational Medical Outcomes Partnership (OMOP)
Common Data Model (CDM), version 5.7

Analyses were generated using SHYFT Quantum version 6.7.0 and R v 3.2.5.

The standardized code sets present in the OMOP CDM and the SHYFT STRATA and QUANTUM platforms
were used to guarantee that variables were derived identically for each dataset (Table 2).

Study Design

Missingness was artificially introduced into the variables to be imputed using the ampute function of the
R Package Multiple Chained Imputation Equations (MICE).

Missing at random and missing not at random patterns of missingness were evaluated.

The missing not at random missingness pattern assumed that the missingness was most dependent on
treatment response, somewhat dependent on stratification and treatment variables, and least dependent on
demographic variables.

Missingness was introduced at different levels from 10% to 50% of the data. It was assumed that any
number of variables to be imputed could be missing at any given time.

Imputation was conducted using the R Packages MICE and Data Mining with R (DMwR).

To represent a baseline for comparison to all other imputation strategies, the data was first imputed by
randomly sampling non-missing values. This method was then compared with predictive means matching
(PMM) without MICE, PMM with MICE, and K Nearest Neighbors (k-NN) imputation methods.

For each missingness pattern, dataset, and imputation method, 500 unique amputed datasets for imputation
were generated.

These unique amputed datasets were imputed and the imputation results were compared to the original
dataset with no missingness.

Results
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Table 1: Variables for Imputation

Research Usage | — Type | Imputed

Gender Demographic Categorical No
Age at Index Demographic Continuous No
Count of Blood Transfusions Patient Stratification Continuous Yes
Presence of Azacitizine Exposure Treatment Binary Yes
Time to Death Response Continuous Yes
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Table 2: Data Set Summary Statistics

- Emm e

Total (N) 2,002 719
Gender (%)

Male 52 58

Female 48 49
Age at Index — Mean years (SD) 63.8 (17.2) 68.9 (39.2)
Blood Transfusion — Mean years (SD) 142.0 (362.0) 14.0 (20.0)
Azacitidine Exposure (%) 13 5
Time to Death — Mean years (SD) 0.4 (3.9 0.9 (137.7)

SD, standard deviation

Summary

The performance of our imputation models was in many cases consistent with other investigations,®® though it
would seem in some cases MICE performs less well than we might expect.

k-NN imputation generally performs best compared to other methods, but the degree to which it outperforms
even random sampling varies by data type and missingness.

Imputation was generally more successful in missing at random datasets.

While models for EMR data appear to be more predictive based on the AUC metric, they are more error-
prone.

e This is likely because even in a relatively complete dataset, EMR provides more patients with fewer
records each, and thus there may be relatively few events of interest per patient.
* For example, in the missing not at random EMR imputations, the skewed distribution of blood
transfusion events introduces very high levels of error into the k-NN imputation.
* Because EMR may more often be missing at random, k-NN imputation may remain a viable strategy.
e |t is worthwhile to consider using a subset of exceptionally well-captured individuals as a training dataset
for k-NN imputation in any EMR dataset.
In general, the varying performance of each imputation strategy suggests significant value for repeated
evaluation of these strategies whenever an imputed dataset is to be used for analysis.

During this evaluation, a key enabler of the repeat analysis was the usage of the OMOP CDM standard
model.

* Consistent cohorts and variables between datasets could be reliably identified.
* Analysis could be readily streamlined due to standardized data model.

Limitations

This study represents a preliminary investigation into these methods, and not all components of imputation
methodology could be considered.

* While the variables selected were chosen to be representative of variables of interest in health
economics and outcomes research, they do not represent a comprehensive or large set of variables.
The number of variables to be imputed can significantly impact algorithm performance.
o Similarly, identical parameterization was used for all datasets and missingness types. In a true application
of data imputation, these would ideally be tuned to the data itself.
¢ No additional training dataset was used in any method, and we would expect this to impact the
performance of different methods.
The disease cohort selected for this research may be somewhat idiosyncratic: AML is a rapidly progressing
disease and thus measures related to treatment and response may behave atypically compared to what we
would see in other therapeutic areas of interest.

Conclusions

Imputation techniques can significantly improve the informativeness of health economics and outcomes
research when appropriate methods are tested and applied.

Clinical data standards such as the OMOP CDM are well suited to enable rigorous and repeatable
methodological evaluations, which should be a key consideration when imputing a dataset.

References

1. Bell ML et al. Differential dropout and bias in randomised controlled trials: When it matters and when it may not. BMJ 2013;
346: e8668.

Berger M et al. Opportunities and challenges in leveraging electronic health record data in oncology. Future Oncology 12:10.
Gunsoy N et al. How to tackle the estimation of treatment impact in the presence of differential withdrawal and missing data
among study arms? ISPOR Conference Workshop, May 21 2019.

https://www.cdisc.org/standards/foundational/sdtm.

https://www.guardianresearch.org/.

https://www.ohdsi.org/data-standardization/the-common-data-model/.

Grinblatt DL et al. Transfusion independence in patients with hematologic disorders receiving Azacitidine who are enrolled in

AVIDA, a longitudinal patient registry. Blood, 2008, 112 (11): 2683.

Schmitt P et al. A comparson of six methods for missing data imputation. J Biom Biostat 6:224.

Jadhay, A et al. Comparison of Performance of Data Imputation Methods for Numeric Dataset. Applied Artificial Intelligence.
33:10.

Disclosures:

w N

No ok

© ®

CM, JR, and AG are employees of Medidata Solutions.

Presented at ISPOR Europe 2019, 2-6 November 2019
Copenhagen, Denmark QR CODE



