

# **Evaluation of Missing Data Imputation Strategies in** Clinical Trial and EMR Data Using Standardized Data Models

McLean C<sup>1</sup>, Ransom J<sup>1</sup>, Galaznik A<sup>1</sup>

<sup>1</sup>Medidata Solutions, Boston, MA, USA

## **Background**

- Data missingness is a major challenge and a source of bias in evidence-based medicine.<sup>1</sup>
- Missing data is common in both randomized controlled trials (RCT) and observational real-world data (RWD) studies.2
- Records that contain incomplete data are often excluded from studies, but this strategy can introduce bias. Biases tend to differ between RCT and observational RWD datasets.3
- In this study, we conducted an assessment for methods for imputing missing data in both RCT and RWD acute myeloid leukemia (AML) datasets.
- A challenge of this type of analysis is the presentation of data in variable formats. 1 To address this issue, an evaluation of the utility of standardizing data format was also performed.

#### **Objectives**

- Evaluate the utility of different techniques for imputing missing data
- Evaluate the utility of standardizing data format

## **Methods**

### **Data Source**

- The clinical trial data cohort was derived from a pooled dataset of 7 clinical trials (n=719) for relapsed/refractory AML, conducted from March 2008 - Nov 2017, from the Medidata archive of > 3,000 trials.4
  - Pooling was accomplished through harmonization to Clinical Data Interchange Standards Consortium Study Data Tabulation Model version 1.4.5
- De-identified Oncology Electronic Medical Record (EMR) data was obtained from the Guardian Research Network<sup>™</sup> (GRN) of integrated delivery systems from Jan 1990 – July 2018.
  - GRN is a nationwide consortium that aggregates hundreds of thousands of cancer patients' electronic medical records from multiple integrated community health systems into a single searchable database.<sup>6</sup>

#### Variables for Imputation

- Data containing the same five variables for each data source were created as sample data (Table 1).
- Metrics were selected to represent a number of potential variables of interest in both clinical and health outcomes study contexts.
- Imputation was evaluated using categorical, continuous numerical, and binary values.
- Only non-demographic observations were imputed; demographic variables were used as covariates in imputation processes.

#### Data Transformation and Analysis

- Both RCT and RWD datasets were converted to the Observational Medical Outcomes Partnership (OMOP) Common Data Model (CDM), version 5.7
- Analyses were generated using SHYFT Quantum version 6.7.0 and R v 3.2.5.
- The standardized code sets present in the OMOP CDM and the SHYFT STRATA and QUANTUM platforms were used to guarantee that variables were derived identically for each dataset (Table 2).

#### Study Design

- Missingness was artificially introduced into the variables to be imputed using the ampute function of the R Package Multiple Chained Imputation Equations (MICE).
- Missing at random and missing not at random patterns of missingness were evaluated.
- The missing not at random missingness pattern assumed that the missingness was most dependent on treatment response, somewhat dependent on stratification and treatment variables, and least dependent on demographic variables.
- Missingness was introduced at different levels from 10% to 50% of the data. It was assumed that any number of variables to be imputed could be missing at any given time.
- Imputation was conducted using the R Packages MICE and Data Mining with R (DMwR).
- To represent a baseline for comparison to all other imputation strategies, the data was first imputed by randomly sampling non-missing values. This method was then compared with predictive means matching (PMM) without MICE, PMM with MICE, and K Nearest Neighbors (k-NN) imputation methods.
- For each missingness pattern, dataset, and imputation method, 500 unique amputed datasets for imputation were generated.
- These unique amputed datasets were imputed and the imputation results were compared to the original dataset with no missingness.

## **Results**









RMSE, root mean square error

| Table 1: Variables for Imputation |                        |             |         |  |
|-----------------------------------|------------------------|-------------|---------|--|
| Variable                          | Research Usage         | Туре        | Imputed |  |
| Gender                            | Demographic            | Categorical | No      |  |
| Age at Index                      | Demographic            | Continuous  | No      |  |
| Count of Blood Transfusions       | Patient Stratification | Continuous  | Yes     |  |
| Presence of Azacitizine Exposure  | Treatment              | Binary      | Yes     |  |
| Time to Death                     | Response               | Continuous  | Yes     |  |

#### Figure 2: AUC









Table 2: Data Set Summary Statistics

| Table 2. Data Set Suffillary Statistics |               |             |  |
|-----------------------------------------|---------------|-------------|--|
|                                         | RWD           | RCT         |  |
| Total (N)                               | 2,002         | 719         |  |
| Gender (%)<br>Male<br>Female            | 52<br>48      | 58<br>42    |  |
| Age at Index – Mean years (SD)          | 63.8 (17.2)   | 68.9 (39.2) |  |
| Blood Transfusion – Mean years (SD)     | 142.0 (362.0) | 14.0 (20.0) |  |
| Azacitidine Exposure (%)                | 13            | 5           |  |
| Time to Death - Mean years (SD)         | 0.4 (3.9)     | 0.9 (137.7) |  |
| SD, standard deviation                  |               |             |  |

## **Summary**

- The performance of our imputation models was in many cases consistent with other investigations, 8,9 though it would seem in some cases MICE performs less well than we might expect.
- k-NN imputation generally performs best compared to other methods, but the degree to which it outperforms even random sampling varies by data type and missingness.
- Imputation was generally more successful in missing at random datasets.
- While models for EMR data appear to be more predictive based on the AUC metric, they are more error-
  - This is likely because even in a relatively complete dataset, EMR provides more patients with fewer records each, and thus there may be relatively few events of interest per patient.
  - For example, in the missing not at random EMR imputations, the skewed distribution of blood transfusion events introduces very high levels of error into the k-NN imputation.
  - Because EMR may more often be missing at random, k-NN imputation may remain a viable strategy. • It is worthwhile to consider using a subset of exceptionally well-captured individuals as a training dataset
- for k-NN imputation in any EMR dataset. • In general, the varying performance of each imputation strategy suggests significant value for repeated evaluation of these strategies whenever an imputed dataset is to be used for analysis.
- During this evaluation, a key enabler of the repeat analysis was the usage of the OMOP CDM standard
- model.
  - Consistent cohorts and variables between datasets could be reliably identified. • Analysis could be readily streamlined due to standardized data model.

## Limitations

- This study represents a preliminary investigation into these methods, and not all components of imputation. methodology could be considered.
  - While the variables selected were chosen to be representative of variables of interest in health economics and outcomes research, they do not represent a comprehensive or large set of variables. The number of variables to be imputed can significantly impact algorithm performance.
  - Similarly, identical parameterization was used for all datasets and missingness types. In a true application of data imputation, these would ideally be tuned to the data itself.
- No additional training dataset was used in any method, and we would expect this to impact the performance of different methods.
- The disease cohort selected for this research may be somewhat idiosyncratic: AML is a rapidly progressing disease and thus measures related to treatment and response may behave atypically compared to what we would see in other therapeutic areas of interest.

## **Conclusions**

- Imputation techniques can significantly improve the informativeness of health economics and outcomes research when appropriate methods are tested and applied.
- Clinical data standards such as the OMOP CDM are well suited to enable rigorous and repeatable methodological evaluations, which should be a key consideration when imputing a dataset.

## References

- 1. Bell ML et al. Differential dropout and bias in randomised controlled trials: When it matters and when it may not. BMJ 2013;
- 2. Berger M et al. Opportunities and challenges in leveraging electronic health record data in oncology. Future Oncology 12:10. 3. Gunsoy N et al. How to tackle the estimation of treatment impact in the presence of differential withdrawal and missing data among study arms? ISPOR Conference Workshop, May 21 2019.
- 4. https://www.cdisc.org/standards/foundational/sdtm.
- 5. https://www.guardianresearch.org/.
- 6. https://www.ohdsi.org/data-standardization/the-common-data-model/. 7. Grinblatt DL et al. Transfusion independence in patients with hematologic disorders receiving Azacitidine who are enrolled in
- AVIDA, a longitudinal patient registry. Blood, 2008, 112 (11): 2683. 8. Schmitt P et al. A comparson of six methods for missing data imputation. J Biom Biostat 6:224. 9. Jadhav, A et al. Comparison of Performance of Data Imputation Methods for Numeric Dataset. Applied Artificial Intelligence.
- Disclosures:
- CM, JR, and AG are employees of Medidata Solutions.

Presented at ISPOR Europe 2019, 2-6 November 2019 Copenhagen, Denmark